UNIWERSYTET ŁÓDZKI - Centralny System Uwierzytelniania
Strona główna

Mathematics 1

Informacje ogólne

Kod przedmiotu: 0600-EAMB1B
Kod Erasmus / ISCED: (brak danych) / (brak danych)
Nazwa przedmiotu: Mathematics 1
Jednostka: Wydział Ekonomiczno-Socjologiczny
Grupy:
Punkty ECTS i inne: 0 LUB 8.00 LUB 6.00 (zmienne w czasie) Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.

zobacz reguły punktacji
Język prowadzenia: angielski
Kierunek studiów:

E

Profil programu studiów:

O

Stopień studiów:

1

Forma studiów:

stacjonarne

Wymagania wstępne:

(tylko po angielsku) The requirements are skills from the secondary level in precalculus, algebra and trigonometry. They include, among others, knowledge of linear, polynomial, rational, exponential, logarithmic, and trigonometric functions.


Skrócony opis:

Celem kursu jest zapoznanie studentów z podstawowymi narzędziami analizy matematycznej niezbędnymi do opisu i analizy zjawisk ekonomicznych.

Efekty uczenia się: (tylko po angielsku)

1. Knowledge (06E-1A_W07):

The students develop knowledge of mathematical tools, mainly:

- they know the basic properties of elementary functions,

- they understand the basic concepts of calculus: derivatives as rates of change, integrals as generalised sums,

- they define and interpret marginal functions and elasticity functions in economics,

- they distinguish between types of integrals,

- they describe methods of solving applied max/min problems,

- they describe methods of solving ordinary differential equations,

- they know the basic properties of vectors and matrices,

- they understand the primary objects in 2D- and 3D -space: vectors, lines and planes,

- they describe methods of solving systems of linear equations.

2. Skills (06E-1A_U05):

After completing the course, students:

- evaluate the properties of a graph of a function using the concept of limit, continuity and derivatives of functions

- analyse properties of functions by examining their first and second derivatives

- apply the basic rules and techniques of integration to calculate indefinite and definite integrals

- demonstrate some chosen techniques of solving ordinary differential equations

- use the basic operations on matrices

- find the length of vectors and angle between vectors

- demonstrate selected techniques for solving linear systems of equations.

- apply the rules of differentiation to differentiate functions

- apply differentiation to solve applied max/min problems

- find a local linear approximation of functions,

- describe some phenomena in economics using mathematical language and apply calculus to solve related max/min problems.

3. Competences (06E-1A_K01, 06E-1A_K03):

After completing the course, student: s

- follows the rules of logic,

- demonstrates an understanding of the fundamental concepts of calculus and linear algebra and their applications in economics.

Zajęcia w cyklu "Semestr zimowy 2024/2025" (zakończony)

Okres: 2024-10-01 - 2025-03-02
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 28 godzin więcej informacji
Wykład, 28 godzin więcej informacji
Koordynatorzy: Mariusz Górajski
Prowadzący grup: Mariusz Górajski
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Ocena zgodna z regulaminem studiów
Ćwiczenia - Ocena zgodna z regulaminem studiów
Wykład - Ocena zgodna z regulaminem studiów
Czy ECTS?:

T

Czy kurs na PZK?:

T

Czy IRK BWZ?:

T

Zajęcia w cyklu "Semestr zimowy 2023/2024" (zakończony)

Okres: 2023-10-01 - 2024-02-25
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 28 godzin więcej informacji
Wykład, 28 godzin więcej informacji
Koordynatorzy: Mariusz Górajski
Prowadzący grup: Mariusz Górajski
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Ocena zgodna z regulaminem studiów
Ćwiczenia - Ocena zgodna z regulaminem studiów
Wykład - Ocena zgodna z regulaminem studiów
Czy ECTS?:

T

Czy kurs na PZK?:

T

Metody dydaktyczne:

(tylko po angielsku) The teaching methods applied to the course include lectures, discussions, solving exercises and problems, presentations, and e-learning via Moodle.

Sposoby i kryteria oceniania:

(tylko po angielsku) Based on the point system.

Practice class:

- activity during classes and quizzes at the e-learning platform(+/-10 points),

- attendance at all classes and lectures is obligatory (two unjustified absences are acceptable), the third and subsequent absence from the lessons = 2 points are taken away,

- homework: a set of problems for each class.

- TEST. The test consists of 10 open-ended practical exercises (50 points).


The final exam has a form of up to 30 closed-ended and open-ended questions (50 points).


The sufficient condition to receive the credit for

- the practical classes (tutorials) are to collect at least 25 points (TEST, activity, attendance)

- the course is to pass the practical classes and collect at least 50 points from the final exam and tutorials.


Make-up exams:


You can retake the test twice during the winter exam session.

Metody weryfikacji i oceny stopnia osiągnięcia założonych efektów uczenia się:

(tylko po angielsku) Methods to verify the achievement of the assumed learning outcomes include:

- practice class: student activity during lessons, quizzes at the e-learning platform, and one written test (which consists of up to 8 open-ended practical exercises)

- the final exam consists of two parts: the written part has up to 30 closed-ended or open-ended questions, and the oral exam consists of two open-ended questions.


The method of assessment is based on a point system. The sufficient condition to receive the credit for

- the practical class is to collect at least 25 points (TEST, activity, attendance)

- the course is to pass the practical classes and collect at least 50 points from the final exam and tutorials.


Szczegółowe treści kształcenia:

(tylko po angielsku) Unit 1 Precalculus:

1. Properties of single-variable functions: domain, range, zeroes, monotonicity, extreme points, convexity, concavity, inflection points, the composition of two functions, shifting and reflecting graphs, inverse functions.

2. Limits, continuity and asymptotes.


Unit 2 Differentiation

1. Derivative and its geometrical and physical interpretations.

2. Derivatives of the sum, product and quotient.

3. The chain rule, implicit differentiation, derivatives of inverse functions.

4. Higher-order derivatives.


Unit 3 Application of Differentiation

1. The L’Hospital rule.

2. Testing for monotonicity and local extreme points.

3. Testing for convexity, concavity and inflection points.

4. Polynomial approximation: the Taylor formula.

5. Application of differentiation in economics: marginal functions and elasticities.


Unit 4 Integration and its applications

1. Antiderivatives and indefinite integrals.

2. Techniques of integration: integration by substitution and by parts.

3. Definite integrals and Fundamental Theorem of Calculus.

4. Applications of the integral calculus: areas between two functions, average values of functions, finding total cost and revenue functions, consumer’s and producer’s surplus.

5. Differential equations: separable and linear equations.


Unit 5 Vectors, matrices and linear equations

1. Vectors, dot products, vector length, and angles between vectors.

2. Determinants, area of parallelograms and volume of parallelepipeds.

3. Equations of lines and planes.

4. Matrix operations: multiplication by a scalar, addition, transposition, multiplication; matrix inverses.

5. The rank of a matrix, a matrix in the row echelon form, and the Gaussian elimination.

6. Linear systems, solutions to square and rectangular systems, basic solutions.


Literatura: (tylko po angielsku)

Abramson J. Precalculus, OpenStax, 2017, https://openstax.org/details/books/precalculus

Herman E. J., Strang G., Calculus Volume 1, 2 3, OpenStax, 2017, https://openstax.org/details/books/calculus-volume-1

https://openstax.org/details/books/calculus-volume-2

https://openstax.org/details/books/calculus-volume-3

Sydsaeter K., Hammond P., Essential Mathematics for Economic Analysis, Prentice-Hall, third edition, 2008

Zajęcia w cyklu "Semestr zimowy 2022/2023" (zakończony)

Okres: 2022-10-01 - 2023-02-19
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 28 godzin więcej informacji
Wykład, 28 godzin więcej informacji
Koordynatorzy: Mariusz Górajski
Prowadzący grup: Mariusz Górajski
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Ocena zgodna z regulaminem studiów
Ćwiczenia - Ocena zgodna z regulaminem studiów
Wykład - Ocena zgodna z regulaminem studiów
Czy ECTS?:

T

Czy IRK BWZ?:

T

Metody dydaktyczne:

(tylko po angielsku) The teaching methods applied to the course include lectures, discussions, solving exercises and problems, presentations, and e-learning via Moodle.

Sposoby i kryteria oceniania:

(tylko po angielsku) Based on the point system.

Practice class:

- activity during classes and quizzes at the e-learning platform(+/-10 points),

- attendance at all classes and lectures is obligatory (two unjustified absences are acceptable), the third and subsequent absence from the lessons = 2 points are taken away,

- homework: a set of problems for each class.

- TEST. The test consists of 10 open-ended practical exercises (50 points).


The final exam has a form of up to 30 closed-ended and open-ended questions (50 points).


The sufficient condition to receive the credit for

- the practical classes (tutorials) are to collect at least 25 points (TEST, activity, attendance)

- the course is to pass the practical classes and collect at least 50 points from the final exam and tutorials.


Make-up exams:


You can retake the test twice during the winter exam session.

Metody weryfikacji i oceny stopnia osiągnięcia założonych efektów uczenia się:

(tylko po angielsku) Methods to verify the achievement of the assumed learning outcomes include:

- practice class: student activity during lessons, quizzes at the e-learning platform, and one written test (which consists of up to 8 open-ended practical exercises)

- the final exam consists of two parts: the written part has up to 30 closed-ended or open-ended questions, and the oral exam consists of two open-ended questions.


The method of assessment is based on a point system. The sufficient condition to receive the credit for

- the practical class is to collect at least 25 points (TEST, activity, attendance)

- the course is to pass the practical classes and collect at least 50 points from the final exam and tutorials.


Szczegółowe treści kształcenia:

(tylko po angielsku) Unit 1 Precalculus:

1. Properties of single-variable functions: domain, range, zeroes, monotonicity, extreme points, convexity, concavity, inflection points, the composition of two functions, shifting and reflecting graphs, inverse functions.

2. Limits, continuity and asymptotes.


Unit 2 Differentiation

1. Derivative and its geometrical and physical interpretations.

2. Derivatives of the sum, product and quotient.

3. The chain rule, implicit differentiation, derivatives of inverse functions.

4. Higher-order derivatives.


Unit 3 Application of Differentiation

1. The L’Hospital rule.

2. Testing for monotonicity and local extreme points.

3. Testing for convexity, concavity and inflection points.

4. Polynomial approximation: the Taylor formula.

5. Application of differentiation in economics: marginal functions and elasticities.


Unit 4 Integration and its applications

1. Antiderivatives and indefinite integrals.

2. Techniques of integration: integration by substitution and by parts.

3. Definite integrals and Fundamental Theorem of Calculus.

4. Applications of the integral calculus: areas between two functions, average values of functions, finding total cost and revenue functions, consumer’s and producer’s surplus.

5. Differential equations: separable and linear equations.


Unit 5 Vectors, matrices and linear equations

1. Vectors, dot products, vector length, and angles between vectors.

2. Determinants, area of parallelograms and volume of parallelepipeds.

3. Equations of lines and planes.

4. Matrix operations: multiplication by a scalar, addition, transposition, multiplication; matrix inverses.

5. The rank of a matrix, a matrix in the row echelon form, and the Gaussian elimination.

6. Linear systems, solutions to square and rectangular systems, basic solutions.


Literatura: (tylko po angielsku)

Abramson J. Precalculus, OpenStax, 2017, https://openstax.org/details/books/precalculus

Herman E. J., Strang G., Calculus Volume 1, 2 3, OpenStax, 2017, https://openstax.org/details/books/calculus-volume-1

https://openstax.org/details/books/calculus-volume-2

https://openstax.org/details/books/calculus-volume-3

Sydsaeter K., Hammond P., Essential Mathematics for Economic Analysis, Prentice-Hall, third edition, 2008

Zajęcia w cyklu "Semestr zimowy 2021/2022" (zakończony)

Okres: 2021-10-01 - 2022-01-23
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 28 godzin więcej informacji
Wykład, 28 godzin więcej informacji
Koordynatorzy: Mariusz Górajski
Prowadzący grup: Mariusz Górajski
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Ocena zgodna z regulaminem studiów
Ćwiczenia - Ocena zgodna z regulaminem studiów
Wykład - Ocena zgodna z regulaminem studiów
Czy ECTS?:

T

Czy IRK BWZ?:

T

Metody dydaktyczne:

(tylko po angielsku) The teaching methods applied to the course include lectures, discussions, solving exercises and problems, presentations, and e-learning via Moodle.

Sposoby i kryteria oceniania:

(tylko po angielsku) Based on the point system.


Practice class:

- activity during classes and quizzes at the e-learning platform(+/-10 points),

- attendance at all classes and lectures is obligatory (two unjustified absences are acceptable), the third and subsequent absence from the lessons = 2 points are taken away,

- homework: a set of problems for each class.

- TEST. The test consists of 10 open-ended practical exercises (50 points).


The final exam has a form of up to 30 closed-ended and open-ended questions (50 points).


The sufficient condition to receive the credit for

- the practical classes (tutorials) are to collect at least 25 points (TEST, activity, attendance)

- the course is to pass the practical classes and collect at least 50 points from the final exam and tutorials.


Make-up exams:


You can retake the test twice during the winter exam session.

Szczegółowe treści kształcenia:

(tylko po angielsku) Unit 1 Precalculus:

1. Properties of single-variable functions: domain, range, zeroes, monotonicity, extreme points, convexity, concavity, inflection points, the composition of two functions, shifting and reflecting graphs, inverse functions.

2. Limits, continuity and asymptotes.


Unit 2 Differentiation

1. Derivative and its geometrical and physical interpretations.

2. Derivatives of the sum, product and quotient.

3. The chain rule, implicit differentiation, derivatives of inverse functions.

4. Higher-order derivatives.


Unit 3 Application of Differentiation

1. The L’Hospital rule.

2. Testing for monotonicity and local extreme points.

3. Testing for convexity, concavity and inflection points.

4. Polynomial approximation: the Taylor formula.

5. Application of differentiation in economics: marginal functions and elasticities.


Unit 4 Integration and its applications

1. Antiderivatives and indefinite integrals.

2. Techniques of integration: integration by substitution and by parts.

3. Definite integrals and Fundamental Theorem of Calculus.

4. Applications of the integral calculus: areas between two functions, average values of functions, finding total cost and revenue functions, consumer’s and producer’s surplus.

5. Differential equations: separable and linear equations.


Unit 5 Vectors, matrices and linear equations

1. Vectors, dot products, vector length, and angles between vectors.

2. Determinants, area of parallelograms and volume of parallelepipeds.

3. Equations of lines and planes.

4. Matrix operations: multiplication by a scalar, addition, transposition, multiplication; matrix inverses.

5. The rank of a matrix, a matrix in the row echelon form, and the Gaussian elimination.

6. Linear systems, solutions to square and rectangular systems, basic solutions.


Literatura: (tylko po angielsku)

Abramson J. Precalculus, OpenStax, 2017, https://openstax.org/details/books/precalculus

Herman E. J., Strang G., Calculus Volume 1, 2 3, OpenStax, 2017, https://openstax.org/details/books/calculus-volume-1

https://openstax.org/details/books/calculus-volume-2

https://openstax.org/details/books/calculus-volume-3

Sydsaeter K., Hammond P., Essential Mathematics for Economic Analysis, Prentice-Hall, third edition, 2008

Zajęcia w cyklu "Semestr zimowy 2020/2021" (zakończony)

Okres: 2020-10-01 - 2021-02-07
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Mariusz Górajski
Prowadzący grup: Mariusz Górajski
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Ocena zgodna z regulaminem studiów
Ćwiczenia - Ocena zgodna z regulaminem studiów
Wykład - Ocena zgodna z regulaminem studiów
Czy ECTS?:

T

Czy IRK BWZ?:

T

Metody dydaktyczne:

(tylko po angielsku) The teaching methods applied to the course include lecture, discussion, solving exercises and problems, presentations, e-learning via the Moodle platform

Sposoby i kryteria oceniania:

(tylko po angielsku) Based on the point system.

Practice class:

- activity during classes and quizzes at the e-learning platform(+/-10 points),

- attendance at all classes and lectures is obligatory (two unjustified absences are acceptable), the third and subsequent absence from the lessons = 2 points are taken away,

- homework: a set of problems for each class.

- TEST. The test consists of 10 open-ended practical exercises (50 points).


The final exam has a form of up to 30 closed-ended and open-ended questions (50 points).


The sufficient condition to receive the credit for

- the practical classes (tutorials) is to collect at least 25 points (TEST, activity, attendance)

- the course is to pass the practical classes and collect at least 50 points from the final exam and tutorials.


Make-up exams:


You can retake the test twice during the winter exam session.

Szczegółowe treści kształcenia:

(tylko po angielsku) Unit 1 Precalculus:

1. Properties of single-variable functions: domain, range, zeroes, monotonicity, extreme points, convexity, concavity, inflection points, the composition of two functions, shifting and reflecting graphs, inverse functions.

2. Limits, continuity and asymptotes.


Unit 2 Differentiation

1. Derivative and its geometrical and physical interpretations.

2. Derivatives of the sum, product and quotient.

3. The chain rule, implicit differentiation, derivatives of inverse functions.

4. Higher-order derivatives.


Unit 3 Application of Differentiation

1. The L’Hospital rule.

2. Testing for monotonicity and local extreme points.

3. Testing for convexity, concavity and inflection points.

4. Polynomial approximation: the Taylor formula.

5. Application of differentiation in economics: marginal functions and elasticities.


Unit 4 Integration and its applications

1. Antiderivatives and indefinite integrals.

2. Techniques of integration: integration by substitution and by parts.

3. Definite integrals and Fundamental Theorem of Calculus.

4. Applications of the integral calculus: areas between two functions, average values of functions, finding total cost and revenue functions, consumer’s and producer’s surplus.

5. Differential equations: separable and linear equations.


Unit 5 Vectors, matrices and linear equations

1. Vectors, dot products, vector length, and angles between vectors.

2. Determinants, area of parallelograms and volume of parallelepipeds.

3. Equations of lines and planes.

4. Matrix operations: multiplication by a scalar, addition, transposition, multiplication; matrix inverses.

5. The rank of a matrix, a matrix in the row echelon form, and the Gaussian elimination.

6. Linear systems, solutions to square and rectangular systems, basic solutions.


Literatura: (tylko po angielsku)

Abramson J. Precalculus, OpenStax, 2017, https://openstax.org/details/books/precalculus

Herman E. J., Strang G., Calculus Volume 1, 2 3, OpenStax, 2017, https://openstax.org/details/books/calculus-volume-1

https://openstax.org/details/books/calculus-volume-2

https://openstax.org/details/books/calculus-volume-3

Sydsaeter K., Hammond P., Essential Mathematics for Economic Analysis, Prentice-Hall, third edition, 2008

Zajęcia w cyklu "Semestr zimowy 2019/2020" (zakończony)

Okres: 2019-10-01 - 2020-02-23
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Mariusz Górajski
Prowadzący grup: Mariusz Górajski
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Ocena zgodna z regulaminem studiów
Ćwiczenia - Ocena zgodna z regulaminem studiów
Wykład - Ocena zgodna z regulaminem studiów
Czy ECTS?:

T

Czy IRK BWZ?:

T

Metody dydaktyczne:

(tylko po angielsku) The teaching methods applied to the course include lecture, discussion, solving exercises and problems, presentations, and e-learning via Moodle.

Sposoby i kryteria oceniania:

(tylko po angielsku) Point system


The assessment of the tutorials(classes) consists of three parts :

- activity during classes and quizzes at the e-learning platform(+/-10 points),

- attendance at all classes and lectures is obligatory (two unjustified absences are acceptable), the third and subsequent absence from the lessons = 2 points are taken away,

- two 90 minutes tests, each test consisting of up to 10 open-ended questions or exercises (50 points for each test),



The sufficient condition to receive credit for the classes is to collect at least 50 points.


Final exam:

- the written exam has a form of multiple choice closed questions at the Moodle platform (50 points)

- oral exam (+/-5points).


The final grade is based on points from the written exam, practice classes, and oral exam.


In addition to participation in lectures and classes, students are obliged to conduct their self-studies (110 hours):

- the current study is estimated at 30 hours in the case of lectures and 30 hours for classes,

- preparing for two tests and the final exam: 50 hours.

Szczegółowe treści kształcenia:

(tylko po angielsku) Unit 1 Precalculus:

1. Properties of single-variable functions: domain, range, zeroes, monotonicity, extreme points, convexity, concavity, inflection points, the composition of two functions, shifting and reflecting graphs, inverse functions.

2. Limits, continuity and asymptotes.


Unit 2 Differentiation

1. Derivative and its geometrical and physical interpretations.

2. Derivatives of the sum, product and quotient.

3. The chain rule, implicit differentiation, derivatives of inverse functions.

4. Higher-order derivatives.


Unit 3 Application of Differentiation

1. The L’Hospital rule.

2. Testing for monotonicity and local extreme points.

3. Testing for convexity, concavity and inflection points.

4. Polynomial approximation: the Taylor formula.

5. Application of differentiation in economics: marginal functions and elasticities.


Unit 4 Integration and its applications

1. Antiderivatives and indefinite integrals.

2. Techniques of integration: integration by substitution and by parts.

3. Definite integrals and Fundamental Theorem of Calculus.

4. Applications of the integral calculus: areas between two functions, average values of functions, finding total cost and revenue functions, consumer’s and producer’s surplus.

5. Differential equations: separable and linear equations.


Unit 5 Vectors, matrices and linear equations

1. Vectors, dot products, vector length, and angles between vectors.

2. Determinants, area of parallelograms and volume of parallelepipeds.

3. Equations of lines and planes.

4. Matrix operations: multiplication by a scalar, addition, transposition, multiplication; matrix inverses.

5. The rank of a matrix, a matrix in the row echelon form, and the Gaussian elimination.

6. Linear systems, solutions to square and rectangular systems, basic solutions.


Literatura: (tylko po angielsku)

Abramson J. Precalculus, OpenStax, 2017, https://openstax.org/details/books/precalculus

Herman E. J., Strang G., Calculus Volume 1, 2 3, OpenStax, 2017, https://openstax.org/details/books/calculus-volume-1

https://openstax.org/details/books/calculus-volume-2

https://openstax.org/details/books/calculus-volume-3

Sydsaeter K., Hammond P., Essential Mathematics for Economic Analysis, Prentice-Hall, third edition, 2008

Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest UNIWERSYTET ŁÓDZKI.
kontakt deklaracja dostępności mapa serwisu USOSweb 7.1.1.0-6