UNIWERSYTET ŁÓDZKI - Centralny System Uwierzytelniania
Strona główna

Mathematics 2

Informacje ogólne

Kod przedmiotu: 0600-EAMD2B
Kod Erasmus / ISCED: (brak danych) / (brak danych)
Nazwa przedmiotu: Mathematics 2
Jednostka: Wydział Ekonomiczno-Socjologiczny
Grupy: EKONOMIA W JĘZYKU ANGIELSKIM I ST. 2 SEM.
Punkty ECTS i inne: 0 LUB 4.00 LUB 6.00 (zmienne w czasie) Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.

zobacz reguły punktacji
Język prowadzenia: angielski
Kierunek studiów:

E

Profil programu studiów:

O

Stopień studiów:

1

Forma studiów:

stacjonarne

Wymagania wstępne:

(tylko po angielsku) The requirements are introductory calculus and linear algebra (see Mathematics 1). They include derivatives, integrals, vectors and matrices.

Skrócony opis:

Celem kursu jest zapoznanie studentów z podstawowymi narzędziami analizy matematycznej niezbędnymi do opisu i analizy zjawisk ekonomicznych.

Efekty uczenia się: (tylko po angielsku)

1. Knowledge (06E-1A_W07):

The students develop knowledge of mathematical tools, mainly:

- describe methods of solving systems of linear equations,

- define quadratic forms and asses their definiteness,

- understand the basic concepts of several-variables calculus: partial derivatives as rates of change,

- define and interpret gradient, tangent plane, Hessian matrix and quadratic approximation formula,

- define and interpret essential marginal and partial elasticity functions in economics,

- distinguish between types of stationary points for functions of several variables,

- understand the notions of level curves, implicit function and marginal rate of substitution,

- present sufficient and necessary conditions for local extreme points

- define the Lagrange function for the constraints optimisation problems

2. Skills (06E-1A_U05):

After completing the course, students:

- demonstrate selected techniques for solving linear systems of equations,

- apply leading principal minors to verify matrix definiteness,

- find and sketch the graph of level curves,

- apply the rules of differentiation to differentiate several-variables and implicit functions,

- apply differential calculus to solve applied max/min problems with or without constraints,

- find a local linear/quadratic approximation of several variables functions,

- describe some phenomena in economics using mathematical language and apply calculus to solve related max/min problems.

3. Competences (06E-1A_K01, 06E-1A_K03):

After completing the course, student: s

- follows the rules of logic,

- demonstrates an understanding of the fundamental concepts of calculus and linear algebra and their applications in economics.

Zajęcia w cyklu "Semestr letni 2024/2025" (w trakcie)

Okres: 2025-03-03 - 2025-09-30
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 14 godzin więcej informacji
Wykład, 14 godzin więcej informacji
Koordynatorzy: Mariusz Górajski
Prowadzący grup: Mariusz Górajski
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Ocena zgodna z regulaminem studiów
Ćwiczenia - Ocena zgodna z regulaminem studiów
Wykład - Ocena zgodna z regulaminem studiów
Czy ECTS?:

T

Czy kurs na PZK?:

T

Czy IRK BWZ?:

T

Metody dydaktyczne:

(tylko po angielsku) The teaching methods applied to the course include lecture, discussion, solving exercises and problems, presentations, and e-learning via Moodle.

Metody weryfikacji i oceny stopnia osiągnięcia założonych efektów uczenia się:

(tylko po angielsku) Based on the point system.

Practice class:

- activity during classes and quizzes at the e-learning platform(+/-10 points),

- attendance at all classes and lectures is obligatory (two unjustified absences are acceptable), the third and subsequent absence from the lessons = 2 points are taken away,

- homework: a set of problems for each class.

- TEST. The test consists of 10 open-ended practical exercises (50 points).



The final exam has a form of up to 30 closed-ended and open-ended questions (50 points).


The sufficient condition to receive the credit for

- the practical classes (tutorials) is to collect at least 25 points (TEST, activity, attendance)

- the course is to pass the practical classes and collect at least 50 points from the final exam and tutorials.


Make-up exams:

You can retake the test twice during the winter exam session.


In addition to participation in lectures and classes, students are obliged to conduct their self-studies (55 hours):

- the current study is estimated at 15 hours in the case of lectures and 15 hours for classes,

- preparing for two tests and the final exam: 25 hours.

Szczegółowe treści kształcenia:

(tylko po angielsku) 1. Rank of matrix, the matrix in the row echelon form, and Gaussian elimination.

2. Linear systems, solutions to square and rectangular systems, basic solutions.

3. Quadratic forms and matric definiteness.

4. Functions of two variables: domain, graphs, level curves and contour plots.

5. Partial derivatives, gradient, the Hessian matrix.

6. Approximation formula: tangent planes, quadratic approximation.

7. Optimization problems. Least-squares problem. Second derivative test for minima, maxima and saddle points.

8. Optimization with constraints. The Lagrange multipliers and constrained differentials.

9. Application of differential calculus in economics

Literatura: (tylko po angielsku)

Herman E. J., Strang G., Calculus Volume 1, 2 3, OpenStax, 2017,

see:

https://openstax.org/details/books/calculus-volume-1

https://openstax.org/details/books/calculus-volume-2

https://openstax.org/details/books/calculus-volume-3

Sydsaeter K., Hammond P., Essential Mathematics for Economic Analysis, Prentice-Hall, third edition,2008

Zajęcia w cyklu "Semestr letni 2023/2024" (zakończony)

Okres: 2024-02-26 - 2024-09-30
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 14 godzin więcej informacji
Wykład, 14 godzin więcej informacji
Koordynatorzy: Mariusz Górajski
Prowadzący grup: Mariusz Górajski
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Ocena zgodna z regulaminem studiów
Ćwiczenia - Ocena zgodna z regulaminem studiów
Wykład - Ocena zgodna z regulaminem studiów
Czy ECTS?:

T

Czy kurs na PZK?:

T

Metody dydaktyczne:

(tylko po angielsku) The teaching methods applied to the course include lecture, discussion, solving exercises and problems, presentations, and e-learning via Moodle.

Metody weryfikacji i oceny stopnia osiągnięcia założonych efektów uczenia się:

(tylko po angielsku) Based on the point system.

Practice class:

- activity during classes and quizzes at the e-learning platform(+/-10 points),

- attendance at all classes and lectures is obligatory (two unjustified absences are acceptable), the third and subsequent absence from the lessons = 2 points are taken away,

- homework: a set of problems for each class.

- TEST. The test consists of 10 open-ended practical exercises (50 points).



The final exam has a form of up to 30 closed-ended and open-ended questions (50 points).


The sufficient condition to receive the credit for

- the practical classes (tutorials) is to collect at least 25 points (TEST, activity, attendance)

- the course is to pass the practical classes and collect at least 50 points from the final exam and tutorials.


Make-up exams:

You can retake the test twice during the winter exam session.


In addition to participation in lectures and classes, students are obliged to conduct their self-studies (55 hours):

- the current study is estimated at 15 hours in the case of lectures and 15 hours for classes,

- preparing for two tests and the final exam: 25 hours.

Szczegółowe treści kształcenia:

(tylko po angielsku) 1. Rank of matrix, the matrix in the row echelon form, and Gaussian elimination.

2. Linear systems, solutions to square and rectangular systems, basic solutions.

3. Quadratic forms and matric definiteness.

4. Functions of two variables: domain, graphs, level curves and contour plots.

5. Partial derivatives, gradient, the Hessian matrix.

6. Approximation formula: tangent planes, quadratic approximation.

7. Optimization problems. Least-squares problem. Second derivative test for minima, maxima and saddle points.

8. Optimization with constraints. The Lagrange multipliers and constrained differentials.

9. Application of differential calculus in economics

Literatura: (tylko po angielsku)

Herman E. J., Strang G., Calculus Volume 1, 2 3, OpenStax, 2017,

see:

https://openstax.org/details/books/calculus-volume-1

https://openstax.org/details/books/calculus-volume-2

https://openstax.org/details/books/calculus-volume-3

Sydsaeter K., Hammond P., Essential Mathematics for Economic Analysis, Prentice-Hall, third edition,2008

Zajęcia w cyklu "Semestr letni 2022/2023" (zakończony)

Okres: 2023-02-20 - 2023-09-30
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 14 godzin więcej informacji
Wykład, 14 godzin więcej informacji
Koordynatorzy: Mariusz Górajski
Prowadzący grup: Mariusz Górajski
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Ocena zgodna z regulaminem studiów
Ćwiczenia - Ocena zgodna z regulaminem studiów
Wykład - Ocena zgodna z regulaminem studiów
Czy ECTS?:

T

Czy kurs na PZK?:

T

Czy IRK BWZ?:

T

Metody dydaktyczne:

(tylko po angielsku) The teaching methods applied to the course include lecture, discussion, solving exercises and problems, presentations, and e-learning via Moodle.

Metody weryfikacji i oceny stopnia osiągnięcia założonych efektów uczenia się:

(tylko po angielsku) Based on the point system.

Practice class:

- activity during classes and quizzes at the e-learning platform(+/-10 points),

- attendance at all classes and lectures is obligatory (two unjustified absences are acceptable), the third and subsequent absence from the lessons = 2 points are taken away,

- homework: a set of problems for each class.

- TEST. The test consists of 10 open-ended practical exercises (50 points).



The final exam has a form of up to 30 closed-ended and open-ended questions (50 points).


The sufficient condition to receive the credit for

- the practical classes (tutorials) is to collect at least 25 points (TEST, activity, attendance)

- the course is to pass the practical classes and collect at least 50 points from the final exam and tutorials.


Make-up exams:

You can retake the test twice during the winter exam session.


In addition to participation in lectures and classes, students are obliged to conduct their self-studies (55 hours):

- the current study is estimated at 15 hours in the case of lectures and 15 hours for classes,

- preparing for two tests and the final exam: 25 hours.

Szczegółowe treści kształcenia:

(tylko po angielsku) 1. Rank of matrix, the matrix in the row echelon form, and Gaussian elimination.

2. Linear systems, solutions to square and rectangular systems, basic solutions.

3. Quadratic forms and matric definiteness.

4. Functions of two variables: domain, graphs, level curves and contour plots.

5. Partial derivatives, gradient, the Hessian matrix.

6. Approximation formula: tangent planes, quadratic approximation.

7. Optimization problems. Least-squares problem. Second derivative test for minima, maxima and saddle points.

8. Optimization with constraints. The Lagrange multipliers and constrained differentials.

9. Application of differential calculus in economics

Literatura: (tylko po angielsku)

Herman E. J., Strang G., Calculus Volume 1, 2 3, OpenStax, 2017,

see:

https://openstax.org/details/books/calculus-volume-1

https://openstax.org/details/books/calculus-volume-2

https://openstax.org/details/books/calculus-volume-3

Sydsaeter K., Hammond P., Essential Mathematics for Economic Analysis, Prentice-Hall, third edition,2008

Zajęcia w cyklu "Semestr letni 2021/2022" (zakończony)

Okres: 2022-02-21 - 2022-09-30
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 14 godzin więcej informacji
Wykład, 14 godzin więcej informacji
Koordynatorzy: Mariusz Górajski
Prowadzący grup: Mariusz Górajski
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Ocena zgodna z regulaminem studiów
Ćwiczenia - Ocena zgodna z regulaminem studiów
Wykład - Ocena zgodna z regulaminem studiów
Czy ECTS?:

T

Czy IRK BWZ?:

T

Metody dydaktyczne:

(tylko po angielsku) The teaching methods applied to the course include lecture, discussion, solving exercises and problems, presentations, and e-learning via Moodle.

Sposoby i kryteria oceniania:

(tylko po angielsku) Based on the point system.

Practice class:

- activity during classes and quizzes at the e-learning platform(+/-10 points),

- attendance at all classes and lectures is obligatory (two unjustified absences are acceptable), the third and subsequent absence from the lessons = 2 points are taken away,

- homework: a set of problems for each class.

- TEST. The test consists of 10 open-ended practical exercises (50 points).



The final exam has a form of up to 30 closed-ended and open-ended questions (50 points).


The sufficient condition to receive the credit for

- the practical classes (tutorials) is to collect at least 25 points (TEST, activity, attendance)

- the course is to pass the practical classes and collect at least 50 points from the final exam and tutorials.


Make-up exams:

You can retake the test twice during the winter exam session.


In addition to participation in lectures and classes, students are obliged to conduct their self-studies (55 hours):

- the current study is estimated at 15 hours in the case of lectures and 15 hours for classes,

- preparing for two tests and the final exam: 25 hours.

Szczegółowe treści kształcenia:

(tylko po angielsku) 1. Rank of matrix, the matrix in the row echelon form, and Gaussian elimination.

2. Linear systems, solutions to square and rectangular systems, basic solutions.

3. Quadratic forms and matric definiteness.

4. Functions of two variables: domain, graphs, level curves and contour plots.

5. Partial derivatives, gradient, the Hessian matrix.

6. Approximation formula: tangent planes, quadratic approximation.

7. Optimization problems. Least-squares problem. Second derivative test for minima, maxima and saddle points.

8. Optimization with constraints. The Lagrange multipliers and constrained differentials.

9. Application of differential calculus in economics

Literatura: (tylko po angielsku)

Herman E. J., Strang G., Calculus Volume 1, 2 3, OpenStax, 2017,

see:

https://openstax.org/details/books/calculus-volume-1

https://openstax.org/details/books/calculus-volume-2

https://openstax.org/details/books/calculus-volume-3

Sydsaeter K., Hammond P., Essential Mathematics for Economic Analysis, Prentice-Hall, third edition,2008

Zajęcia w cyklu "Semestr letni 2020/2021" (zakończony)

Okres: 2021-03-08 - 2021-09-30
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 15 godzin więcej informacji
Wykład, 15 godzin więcej informacji
Koordynatorzy: Mariusz Górajski
Prowadzący grup: Mariusz Górajski, Magdalena Paszkiewicz
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Ocena zgodna z regulaminem studiów
Ćwiczenia - Ocena zgodna z regulaminem studiów
Wykład - Ocena zgodna z regulaminem studiów
Czy ECTS?:

T

Czy IRK BWZ?:

T

Metody dydaktyczne:

(tylko po angielsku) The teaching methods applied to the course include lecture, discussion, solving exercises and problems, presentations.

Sposoby i kryteria oceniania:

(tylko po angielsku) Based on the point system.

Practice class:

- activity during classes and quizzes at the e-learning platform(+/-10 points),

- attendance at all classes and lectures is obligatory (two unjustified absences are acceptable), the third and subsequent absence from the lessons = 2 points are taken away,

- homework: a set of problems for each class.

- TEST. The test consists of 10 open-ended practical exercises (50 points).



The final exam has a form of up to 30 closed-ended and open-ended questions (50 points).


The sufficient condition to receive the credit for

- the practical classes (tutorials) is to collect at least 25 points (TEST, activity, attendance)

- the course is to pass the practical classes and collect at least 50 points from the final exam and tutorials.


Make-up exams:

You can retake the test twice during the winter exam session.


In addition to participation in lectures and classes, students are obliged to conduct their self-studies (55 hours):

- the current study is estimated at 15 hours in the case of lectures and 15 hours for classes,

- preparing for two tests and the final exam: 25 hours.

Szczegółowe treści kształcenia:

(tylko po angielsku) Functions of two variables, tangent approximation and optimization

1. Functions of two variables: domain, graphs, level curves and contour plots.

2. Partial derivatives, gradient, the Hessian matrix.

3. Approximation formula: tangent planes.

4. Optimization problems. Least-squares problem. Second derivative test for minima, maxima and saddle points.

5. Optimization with constraints. The Lagrange multipliers and constrained differentials.

6. Application of differential calculus in economics.

Literatura: (tylko po angielsku)

Herman E. J., Strang G., Calculus Volume 1, 2 3, OpenStax, 2017,

see:

https://openstax.org/details/books/calculus-volume-1

https://openstax.org/details/books/calculus-volume-2

https://openstax.org/details/books/calculus-volume-3

Sydsaeter K., Hammond P., Essential Mathematics for Economic Analysis, Prentice-Hall, third edition,2008

Zajęcia w cyklu "Semestr letni 2019/2020" (zakończony)

Okres: 2020-02-24 - 2020-09-30
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 15 godzin więcej informacji
Wykład, 15 godzin więcej informacji
Koordynatorzy: Mariusz Górajski
Prowadzący grup: Mariusz Górajski, Magdalena Paszkiewicz
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Ocena zgodna z regulaminem studiów
Ćwiczenia - Ocena zgodna z regulaminem studiów
Wykład - Ocena zgodna z regulaminem studiów
Czy ECTS?:

T

Czy IRK BWZ?:

T

Metody dydaktyczne:

(tylko po angielsku) The teaching methods applied to the course include lecture, discussion, solving exercises and problems, presentations.

Sposoby i kryteria oceniania:

(tylko po angielsku) Based on the point system.

Practice class:

- activity during classes and quizzes at the e-learning platform(+/-10 points),

- attendance at all classes and lectures is obligatory (two unjustified absences are acceptable), the third and subsequent absence from the lessons = 2 points are taken away,

- homework: a set of problems for each class.

- TEST. The test consists of 10 open-ended practical exercises (50 points).



The final exam has a form of up to 30 closed-ended and open-ended questions (50 points).


The sufficient condition to receive the credit for

- the practical classes (tutorials) is to collect at least 25 points (TEST, activity, attendance)

- the course is to pass the practical classes and collect at least 50 points from the final exam and tutorials.


Make-up exams:

You can retake the test twice during the winter exam session.


In addition to participation in lectures and classes, students are obliged to conduct their self-studies (55 hours):

- the current study is estimated at 15 hours in the case of lectures and 15 hours for classes,

- preparing for two tests and the final exam: 25 hours.

Szczegółowe treści kształcenia:

(tylko po angielsku) 1. Rank of matrix, the matrix in the row echelon form, and Gaussian elimination.

2. Linear systems, solutions to square and rectangular systems, basic solutions.

3. Quadratic forms and matric definiteness.

4. Functions of two variables: domain, graphs, level curves and contour plots.

5. Partial derivatives, gradient, the Hessian matrix.

6. Approximation formula: tangent planes, quadratic approximation.

7. Optimization problems. Least-squares problem. Second derivative test for minima, maxima and saddle points.

8. Optimization with constraints. The Lagrange multipliers and constrained differentials.

9. Application of differential calculus in economics

Literatura: (tylko po angielsku)

Herman E. J., Strang G., Calculus Volume 1, 2 3, OpenStax, 2017,

see:

https://openstax.org/details/books/calculus-volume-1

https://openstax.org/details/books/calculus-volume-2

https://openstax.org/details/books/calculus-volume-3

Sydsaeter K., Hammond P., Essential Mathematics for Economic Analysis, Prentice-Hall, third edition,2008

Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest UNIWERSYTET ŁÓDZKI.
kontakt deklaracja dostępności mapa serwisu USOSweb 7.1.1.0-6